SECTION-I (Multiple Choice Questions)

This section contains **10 multiple choice questions.** Each question has 4 choices (A), (B), (C) and (D) for its answer, out which **ONLY ONE** is correct.

1.	Select the most ionic and most covalent compounds respectively from the following. CrO_5 , Mn_2O_7 , PbO , P_4O_{10} , SnO_2						
	(A) CrO_5 , Mn_2O_7	(B) PbO, Mn_2O_7	(C) $\operatorname{CrO}_5, \operatorname{P}_4\operatorname{O}_{10}$	(D) SnO_2 , CrO_5			
2.	In which of the following sets the central atom of each member involves sp ³ hybridization?						
	(A) IO_4^-, ICI_4^-, IF_4^+		(B) XeO_3 , XeO_4 , XeF_4				
	(C) $SO_3, SO_3^{2-}, SO_4^{2-}$		(D) PCl_4^+, BF_4^-, ClO	${\sf D}_4^-$			
3.	Which reactions involves a change in the electron – pair geometry (i. e. hybridisation) for the under lined geometry?						
	(A) $\underline{B}F_3 + F^- \rightarrow \underline{B}F_4^-$		(B) $\underline{N}H_3 + H^+ \rightarrow \underline{N}$	(B) $\underline{N}H_3 + H^+ \rightarrow \underline{N}H_4^+$			
	$(C) 2\underline{SO}_2 + O_2 \rightarrow $	SO ₃	(D) $H_2\underline{O} + H^+ \rightarrow I$	$H_3\underline{O}^+$			
4.	Which one of the following species is planar and non – polar with two lone pairs of electrons on the central atom?						
	(A) CIF ₃	(B) XeF_5^-	(C) PCl ₅	(D) BrF_5			
5.	In the structure of H_2CSF_4 , to decide the plane in which $C = S$ is present the following bond angle						
	values are given						
	Axial FSF angle (idealized = 180°) \Rightarrow 170°						
	Equatorial FSF angle (idealized = 120°) \Rightarrow 97°						
	After deciding the plane of double bond, which of the following statements is correct? (A) Two C – H bonds are in the same plane of axial S – F bond						
	(B) Two C – H bonds are in the same plane of equatorial S – F bonds						
	(C) Total five atoms are in the same plane						
	(D) Equatorial S – F	F bonds are perpendicu	ular to plane of π – box	nd			
6.	In which of the following molecules / ions all the bond angles are not equal?						
	(A) SiF ₄	(B) $1Cl_4^-$	(C) SF ₄	(D) PCl ₄ ⁺			
7.	What is the hybridization of boron atoms in compound $Mg[B_2O(OH)_6]$?						
	(A) Both sp^3 (B) One sp^2 and other sp^3						
	(C) Both sp ²		(D) One sp ³ and ot	(D) One sp ³ and other sp ³ d			

8.	If we consider no mixing of '2s' and '2p' orbitals, then the bond order and magnetic nature of the diatomic molecule C_2 is:					
	(A) 3 and diamagn	etic	(B) 2.5 and diam	nagnetic		
	(C) 2 and diamagne	etic	(D) 2 and param	agnetic		
9.	Which of the follow	Which of the following statements are correct?				
	(I) Both melting and boiling points of H_2O are higher than those of H_2Te .					
	(II) In both N_2O_5 and N_2o_4 all $N-O$ bond lengths are equivalent.					
	(III) In both crystalline NaHCO ₃ and KHCO ₃ , HCO ₃ forms only dimeric anion through hydrogen bond					
	(IV) Amongst B_2 , C_2 , N_2^- and O_2 , N_2^- and O_2 on further ionization (losing single electron) form thermodynamically more stable species.					
	(A) (I) and (II)	(B) (III) and (IV)	(C) (II) and (III)	(D) (I) and (IV)		
10.		Which of the following statements is correct?				
	(A) $\left(CH_3 \right)_3 COH is$	s less acidic than (C	H_3 ₃ SiOH			
	` '	nalogue of Si is not s				
		– O bond length is l	longer than expected w	while C – Cl bond length is shorter		
	(D) All of these					
	SI	CTION-II (M	ultiple Choice	Questions)		
This				ach question has 4 choices (A),		
		-	-	RE is/are correct.		
(),		,		,		
11.	Which of the following species are correctly matched with their geometries according to the VSEPR					
	theory?					
	(A) $BrF_6^+ \rightarrow octahedral$		(B) $SnCl_5^- \rightarrow trigonal bipyramidal$			
	(C) $ClF_2^- \rightarrow linear$		(D) $IF_4^+ \rightarrow see - saw$.			
12.	There is $S - S$ linkage in:					
		(B) $S_2O_4^{2-}$	(C) $S_2O_5^{2-}$	(D) $S_2O_7^{2-}$		
13.	In which of the following pairs, the hybridization of the central atoms is same? (A) CIF ₃ , CIF ₃ O (B) CIF ₃ O, CIF ₃ O ₂					
	(C) $\left(\text{CIF}_2\text{O}\right)^+, \left(\text{CIF}_4\text{O}\right)^-$		3	(D) $\left(\text{CIF}_4\text{O}\right)^-\left(\text{XeOF}_4\right)$		
	(C) (CIF ₂ O) , (CIF	· ₄ O)	(D) $\left(\text{CIF}_4\text{O}\right)$ $\left(X\right)$	eOr ₄)		
14.	Which of the follow	Which of the following statements is / are true?				
	(A) It is impossible to satisfy the octet rule for all atoms in XeF ₂					
	(B) MgSO ₄ is soluble in water because hydration energy of MgSO ₄ is higher in comparision to its lattice energy.					
	(C) The bond in NO ⁺ should be stronger than the bond in NO ⁻					

(D) For ozone molecule, one oxygen – oxygen bond is stronger than the other oxygen – oxygen bond

- 15. Hydrogen bonding is present in which of the following species?
 - (A) CH₃NH₂
- (B) CH₃
- (C) CH₃COOH
- (D) CCl₃CH(OH)₂

SECTION - III (Integer Answer Type)

This section contains **09** questions. The answer to each of the questions is a **single digit integer,** ranging from 0 to 9. The correct digit below the question number in the ORS is be bubbled.

- 16. The difference in the number of σ and π bonds in trimer of SO_3 i.e. S_3O_9 is: (consider no coordinate bond to be present)
- 17. In how many following species, the central atoms have two lone pairs of electrons?

 XeF_4 $XeF_5^ F_2SeO_2$ XeF_3^+ $XeOF_4$ $CIOF_3$

 $\operatorname{ICl}_4^ \operatorname{SCl}_2$ OSF_4

18. BrF₃ is a liquid which considerably undergoes self ionization to from cationic and anionic species.

Based on VSEPR theory, number of 90 degree F-Br-F bond angles is In anionic species.

$$2BrF_3 \square \left[BrF_2\right]^+ + \left[BrF_4\right]^-$$

- 19. The bond order of the underlined species; NOHSO₄ is
- 20. How many hydrogen bonded water molecule(s) are associated in CuSO₄.5H₂O.
- 21. The number of vacant hybrid orbitals which participate in the formation of 3 centre 2 electrons bonds i. e., banana bonds in diborane is:
- 22. Amongst the following, the total number of species which does / do not exist is:

$$SF_6, BF_6^{3-}, SF_4, OF_4, AlF_6^{3-}, PH_5, NCl_5, SCl_6$$

- 23. If the dipole moment of AB molecule is given by 2.4 D and A B bond length is 1 A then % covalent character of the bond is
- 24. The number of six membered carbon rings in the structure of Buckminsterfullerene (i.e. C_{60}) is

This section contains **2 multiple choice questions** relating to 1 paragraph. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

Passage for Q. No 25 to 26

Between ionic and covalent bonds, there are large majority of bonds, in which the bonding electrons are shared unequally between two atoms but are not completely transferred. Such bonds are said to be polar colavent bonds and the bond polarity is due to difference in electronegativity, the ability of an atom in a molecule to attract the shared electrons in a covalent bond.

The measure of net polarity is a quantity called the dipole moment, μ , which is defined as the magnitude of the charge Q at either end of the molecular dipole times the distance r between the charges: $\mu = Q \times r$. Molecular polarities give rise to some of the forces that occur between molecules and these forces are of several different types including dipole – dipole forces, London dispersion forces, and hydrogen bonds. All these intermolecular forces are electrical in origin and result from the mutual attraction of unike charges or the mutual repulsion of like charges.

- 25. Which of the following statements is incorrect?
 - (A) Out of trimethylamine and trimethylphosphine, trimethylamine has higher dipole moment
 - (B) Out of $(SiH_3)_2$ O and $(CH_3)_2$ O is more basic
 - (C) The critical temperature of water is higher than that of O_2 because the H_2O molecule has dipole moment.
 - (D) Intermolecular hydrogen bonding increases the enthalpy of vaporization of a liquid due to the increase in the attraction between molecules.
- 26. In which of the following mixture, the London dispersion force acts as major intermolecular force of attraction?
 - (A) Sodium chloride and water

(B) Cyclohexane and carbontetrachloride

(C) Water and ethyl alcohol

(D) Benzene and acetone.

SECTION - V (Matrix Match Type)

This section 4 Question. Each question has four statements Given in **Column - I** and four statements in **Column - II**. Any given statement in **Column - I** can have correct matching with one or more statement (s) given in **column II**.

27. Match the compounds listed in column I with characteristic(s) listed in column II

Column – I		Column – II	
(A)	SF_2	(p)	sp ³ and bent
(B)	KrF ₄	(q)	Lone pair(s)
(C)	NOCI	(r)	Bond angle < 109°28°
(D)	$N(Me)_3$	(s)	sp ² and bent
		(t)	sp ³ d ² and square planar

28. Match the compounds listed in column I with characteristic(s) listed in column II

Column – I			Column – II		
(A)	B_2H_6	(p)	Tet4rahedral hybridization		
(B)	Al ₂ Cl ₆	(q)	Trigonal planar hybridization		
(C)	BeCl ₂ (s)	(r)	Empty orbital(s) of central atom participate in hybridization		
(D)	(SiH ₃) ₃ N	(s)	Two types of bonds		
		(t)	Two types of bond angles.		

29. Match the molecules / species listed in column I with characteristic(s) listed in column II.

Column – I			Column – II	
(A)	ClF_5, BrF_4^+, IF_6^-	(p)	All molecules / ions are polar in nature.	
(B)	ClF_3, BrF_2^+, lCl_4^-	(q)	All molecules / ions have same number of lone pair(s) and identical shape	
(C)	XeF_2, ICI_2^-, I_3^-	(r)	All molecules / ions have same oxidation state of central atoms.	
(D)	ClOF ₃ , ClF ₄ ⁺ , lO ₂ F ₂ ⁻	(s)	All molecules / ions have same hybridization of central atoms	
		(t)	All molecules / ions are isoelectronic species	

30. Match the compounds listed in column – I with characteristic(s) listed in column – II.

Column – I			Column – II	
(A)	Chloral hydrate	(p)	Forms a zig – zag chain in both solid and	
			also in the liquid	
(B)	Hydrogen fluoride	(q)	Forms two dimensional sheet with almost	
			hexagonal symmetry	
(C)	Crystalline boric acid	(r)	London dispersion force	
(D)	Sulphuric acid	(s)	Intramolecular H – bond	
		(t)	Intermolecular H - bond	

SECTION - VI (ASSERTION AND REASON TYPE)

- 31. **Statement 1:** Compounds of Hg^{2+} ions having an ionic radius of 116 pm are more covalent in character than those of Ca^{2+} ions with almost identical size (114 pm) and the same charge. **Statement – 2:** For two ions of the same size and charge, one with an $(n-1)d^{10}ns^0$, electronic configuration will be more polarizing than a cation with an $(n-1)s^2(n-1)p^6ns^0$, electronic configuration
 - (A) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement-1
 - (B) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1
 - (C) Statement -1 is True, Statement -2 is False.
 - (D) Statement -1 is False, Statement -2 is True.

- 32. **Statement -1:** Ethers behave as bases in the presence of mineral acids.
 - **Statement -2:** It is due to the presence of lone pair of electrons on the oxygen atom.
 - (A) Statement -1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement-1
 - (B) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1
 - (C) Statement -1 is True, Statement -2 is False.
 - (D) Statement -1 is False, Statement -2 is True.
- 33. **Statement -1:** Crystals of hydrated calcium sulphate (gypsum : (CaSO₄.2H₂O) are soft and easily cleaved.
 - **Statement -2:** Crystals of anhydrous calcium sulphate (anhydrite: CaSO₄) are very hard and very difficult to cleave.
 - (A) Statement -1 is True, Statement -2 is True; Statement -2 is a correct explanation for Statement-1
 - (B) Statement -1 is True, Statement -2 is True; Statement -2 is NOT a correct explanation for Statement -1
 - (C) Statement -1 is True, Statement -2 is False.
 - (D) Statement -1 is False, Statement -2 is True.

TOPIC: CHEMICAL BONDING

(ANSWER KEY)

1. [B] 2. [D] 3. [A] 4. [B] 5. [A]

6. [C] 7. [A] 8. [D] 9. [D] 10. [D]

11. [ABCD] 12. [ABC] 13. [ABD] 14. [ABC] 15. [ACD]

16. [6] 17. [5] 18. [4] 19. [3] 20. [1]

21. [2] 22. [5] 23. [50%] 24. [20] 25. [B]

26. [B]

27. $[A \rightarrow p, q, r; B \rightarrow q, r, t; C \rightarrow q, s; D \rightarrow r]$

28. $[A \rightarrow p, r, s, t; B \rightarrow p, r, s, t; C \rightarrow p, r, s, t; D \rightarrow q]$

29. $[A \rightarrow p,r;B \rightarrow p,r;C \rightarrow q,s;D \rightarrow p,q,r,s]$

30. $[A \rightarrow r, s; B \rightarrow p, r, t; C \rightarrow q, r, t; D \rightarrow r, t]$

31. [A] 32. [A] 33. [B]